ハプロタイプの集合

semicontinuity
1. upper semicontinuity

  • 定義
    • 拡張された実関値数 f(x) が各点でupper semicontinuous
  • upper semicontinuous at x_0
    • ^{\forall}\epsilon > 0 , \, ^{\exist}U \in \mathcal{N}(x_0) \rm{ s.t. }  f(x) \leq f(x_0)+\epsilon \, \, ^{\forall}x \in U
    • \limsup_{x \rightarrow x_0} \, f(x) \leq f(x_0)
  • f(x) がupper semicontinuous iff  \,  ^{\forall} \alpha \in R, \, \{x \in X | f(x) < \alpha \} \in \mathcal{O}
    • 開集合の定義関数 \chi_O \, (O \in \mathcal{O}) はupper semicontinuous

2. lower semicontinuity

  • 定義
    • 拡張された実関値数 f(x) が各点でlower semicontinuous
  • lower semicontimuous at x_0
    • ^{\forall}\epsilon > 0 , \, ^{\exist}U \in \mathcal{N}(x_0) \rm{ s.t. }  f(x) \geq f(x_0)-\epsilon \, \, ^{\forall}x \in U
    • \liminf_{x \rightarrow x_0} \, f(x) \geq f(x_0)
  • f(x) がlower semicontinuous iff \{x \in X | f(x) > \alpha \} \in \mathcal{O} \rm{ for every } \alpha \in R
    • f(x) がlower semicontinuous iff \{x \in X | f(x) \leq \alpha \}閉集合  \rm{ for every } \alpha \in R
    • 閉集合の定義関数 \chi_F \, \, (F^c \in \mathcal{O}) はlower semicontinuous

3. 性質

  • f(x)x_0 で連続 iff f(x)x_0 で upper semicontinuous かつ lower semicontinuous
  • f,g が upper semicontinuous  \Rightarrow \hspace{8} f + g はupper semicontinuous
    • さらにf,g \geq 0 \hspace{8} \Rightarrow \hspace{8} fg は upper semicotinuous
  • f が upper semicontinuous \Rightarrow \hspace{8} -f は lower semicontinuous
  • その他...

PlanetMath
(X,\mathcal{O}_X), \, \bb{R}^{\rm{*}}=\bb{R}\cup \{\infty, -\infty  \} \rm{    function}:f:X\rightarrow \bb{R}^{\rm{*}}
1. upper semicontinuous

  •  \rm{if } f^{-1}((\alpha,\infty])  \in \mathcal{O}_X \, \forall \alpha \in \bb{R}

2. lower semicontinuous

  • [tex: \rm{if } f^{-1}*1 \in \mathcal{O}_X \, \forall \alpha \in \bb{R} ]

2'. lower semicontinuous

  • f is continuous with respect to the topolory below for \bb{R}^{\rm{*}}
    • {O}_{lower=\{ (\alpha ,\infty] \| \alpha \in \bb{R}  \cup \{-\infty\} \} \cup \{\phi\}

hemicontinuity

*1:\[-\infty,\alpha